Datorsimuleringar ger viktiga insikter om framtidens solceller
Forskare på Chalmers har med hjälp av datorsimuleringar och maskininlärning kommit till nya insikter om hur perovskitmaterial fungerar, vilket är ett viktigt steg framåt för mer effektiva och stabila solceller.

Halida perovskiter är ett samlingsnamn för en grupp material som anses vara mycket lovande och kostnadseffektiva för flexibla och lätta solceller och olika optiska tillämpningar, såsom LED-belysning.
Detta beror på att många av dessa material absorberar och emitterar ljus på ett oerhört effektivt sätt. Men perovskitmaterialen kan brytas ned snabbt, och för att veta hur dessa material bäst ska kunna tillämpas krävs en djupare förståelse för varför det sker samt hur materialet fungerar.

Med hjälp av avancerade datorsimuleringar och maskininlärning har ett forskarlag på institutionen för fysik på Chalmers tekniska högskola studerat en serie 2D-perovskitmaterial och nått avgörande insikter i vad som påverkar deras egenskaper.
– Genom att rita upp materialet i datorsimuleringar, och utsätta det för olika scenarier, kan vi dra slutsatser om hur atomerna i materialet reagerar när man utsätter det för värme, ljus, och så vidare. Med andra ord så har vi har nu en mikroskopisk beskrivning av materialet som är oberoende av vad experiment på materialet visat, men vi kan visa att beskrivningen leder till samma beteende som experimenten, säger professor Paul Erhart, som ingått i forskarlaget.
Vi kan se att i dessa mycket tunna skikt av material beter sig varje lager på olika sätt, och det är något som är mycket, mycket svårt att upptäcka experimentellt
Att använda sig av maskininlärning har varit ett viktigt tillvägagångssätt för forskarna. De har kunnat studera större system, under en längre tid, än vad de standardmetoder man använde sig för bara några år sedan tillät dem att göra.
– Skillnaden mellan simuleringarna och experimenten är att vi kan se på detaljnivå exakt vad som lett fram till de slutgiltiga mätpunkterna i experimenten. Detta gör att vi nu har en mycket större insikt i hur 2D-perovskiter fungerar, fortsätter Paul Erhart.

2D-perovskitmaterial består av oorganiska lager staplade ovanpå varandra. De separeras av organiska molekyler. Att förstå de precisa mekanismer som påverkar samspelet mellan lagren och dessa molekyler är avgörande för att designa effektiva och stabila optoelektroniska enheter baserade på perovskitmaterial.
– Vi kan se att i dessa mycket tunna skikt av material beter sig varje lager på olika sätt, och det är något som är mycket, mycket svårt att upptäcka experimentellt, säger docent Julia Wiktor.
Forskningsresultaten ger en större insikt i hur man kan använda 2D-perovskitmaterial för att designa enheter för olika applikationer och temperaturskillnader.
Källa: Chalmers