Energilagringsmaterial av molekylblock i nanostorlek
Mark Rambaran vid kemiska institutionen på Umeå universitet presenterar i sin avhandling en metod för att framställa fasta material från niobmolekyler i nanostorlek. Niob är ett metalliskt grundämne som kan användas för energilagring.
– Dessa polyoxoniobater är vattenlösliga och kan lätt syntetiseras i stora mängder. De fungerar som molekylära byggstenar, på samma sätt som när ett barn staplar legoklossar, säger han. På så vis kan de användas för att tillverka ett brett spektrum av material, bland annat superkondensatorer som underlättar litiumjonlagring, säger Mark Rambaran.
Han visar i sin avhandling att polyoxoniobater är ett snabbt och effektivt alternativ till konventionella hydrotermiska metoder, visar Mark Rambaran i sin avhandling.
– De kan tillverkas på 15 minuter med hjälp av mikrovågsbestrålning, vilket är mycket kortare tid än de 18 timmar som krävs med tidigare hydrotermiska metoder, säger han.
De nanometerstora molekylerna kan lösas upp i vatten och spinnbeläggas till tunna filmer av till exempel niobpentoxid. När dessa filmer värms upp till temperaturer mellan 200 och 1 200 °C får man ytor med varierande korrosionsbeständighet och elektrokemiska egenskaper.
Vid högre temperaturer blir filmerna kristallina och tål mycket basiska förhållanden – och de är resistenta mot syror. Detta tillvägagångssätt underlättar deponering av alkalifria, tunna metalloxidfilmer med varierande kristallinitet, tjocklek och grovhet.
– Denna förmåga att skapa tunna filmer av niobpentoxid gör det lättare att testa pseudokapacitiva egenskaper, vilket underlättar utvecklingen av elektrokemiska energilagringsenheter, till exempel superkondensatorer, säger Mark Rambaran.
På grund av hur atomerna fördelar sig i den kristallina niobpentoxiden skapas kanaler som lätt kan lagra och släppa litiumjoner i mer än hundra tusen cykler. Det är detta som gör den till en superkondensator, och den erbjuder elektrokemisk energilagring som potentiellt kan ersätta ett typiskt litiumjonbatteri.
– Intresset för att utveckla nya material för energilagring styrs av behovet av att mildra klimatförändringarna – det största och mest akuta hotet mot mänskligheten och biosfären. För att göra detta krävs förbättringar i tillverkningen av solceller/bränsleceller och batterier för att öka deras elektrokemiska energilagringsförmåga, samtidigt som de förblir miljövänliga, säger Mark Rambaran.
Källa: Umeå universitet